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AN INTEGRAL SPLINE METHOD FOR BOUNDARY LAYER EQUATIONS

by
S. G. Rubin* and P. K. Khosla**
Polytechnic Institute of New York

Aerodynamics Laboratories
Farmingdale, New York

ABSTRACT

An integral procedure using spline polynomials is described
for the two-dimensional boundary layer equations. This is a modi-
fied finite-element (MFE) formulation, wherein each term in the

equations, rather than each independent variable, is approximated

with a spline curve fit. Therefore, this is not a true finite-
element or Galerkin method and the conventional spline relation-
ships between functional and derivative values still apply. The
only difference between the present integral formulation and our
earlier differential collocation procedures is in the treatment of
the governing differential equations. The differential methods are
more suited to non-conservation equations; the present integral
formulation is more desirable for conservation or divergence form

of the equations. Boundary layer solutions using conventional sec-
ond-order finite-difference collocation, the second and fourth order
Keller Box Scheme, and fourth-order spline collocation or MFE methods

are compared. Conservation and non-conservation forms are considered.
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Finally, the extension of the MFE formulation to three-coordinate
parabolic systems and for the transonic small disturbance equations

is briefly described.
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1. Introduction

An integral procedure using spline polynomials is described
for the two dimensional boundary layer equations. This is a modi-
fied finite-element (MFE) formulation, wherein each term in the
equations, rather than each independent variable, is approximated
with a spline curve fit. Therefore, this is not a true finite-
element or Galerkin method and the conventional spline relationships
between functional and derivation values still apply. The only
difference between the present integral formulation and our earlier

(1-3) is in the treatment of

differential collocation procedures
the governing differential equations. The differential methods are
more suited to non-conservation equations; the present integral
formulation is more desirable for conservation or divergence form of
the equations.

For the boundary layer equations in divergence form it is shown
here that the spline MFE approach is equivalent to the class of two-
point methods proposed by Keller (4). His second-order development
commonly termed the Keller Box Scheme* (KBS) has been widely used
for boundary layer investigations. It has been suggested that due to
the two-point centered-difference character of this formulation, it
is second-order accurate, even for non-uniform grids. In the present

paper it is shown that when the KBS difference system is reduced to

an equivalent three-point system, the governing equations are in fact

*The two-point KBS development reproduced herein is equivalent to the
original half-point difference version of the KBS only for equatio?g)
in divergence form. This point is not clearly expressed by Wornom

in his applications of the KBS, see Section 7.




only satisfied to first-order in the usual finite-difference sense;

i.e., when the truncation error is evaluated at the mesh point, ..
It is further shown that, for a model equation, a simpler procédure
for obtaining the tridiagonal form of the KBS equations can be de-
rived from the MFE integral method, or alternatively a three-point
weighted averaging procedure. These lead directly to a single tri-
diagcnal structure, for a second-order differential equation, in
place of the 2x2 block-tridiagonal system resulting from the usual
KBS formulation. The MFE approach is extended to higher order by
using cubic splines and it is shown that this leads to the fourth-
order version of the KBS procedure recently applied by Wornom(s).
Boundary layer solutions using conventional second-order finite-
difference collocation, the second and fourth order KBS, and fourth-

(3,9

order spline collocation or MFE methods are compared. Conservation
and non-conservation form are considered. Finally, the extension

of the MFE formulation to three-coordinate parabolic systems and to the
transonic small disturbance equations is briefly described. Solutions

with this development have not yet been obtained.

2. Keller Box Scheme: Conservation Equations

Let us apply the KBS method to the following ordinary differen-

tial equation written in divergence form and with a source term F:

(au) ,=F + (bu), ; a=a (u,urm; F F(u: ™ (1)

b

]

B s

The KBS method considers (1) as two first-order equations, so that,

(2a)




The KBS finite difference analog of (2a) is:

h.
= = Ak
uj uj_1 3 (mj+mj—l)
(2b)
Ei
(am)j-(am)j_l = (Fj+Fj—l) + (bu)j-(bu)j_l

where h. = 7.-1. S
ey T NN

Note that the right-hand side of (2k) iz simply the trapezoidal rule
applied to }'de? . The error in (2b) at (j-%) is formally O(h?).
unj-l

This discretization can be interpreted as the application of a linear
polynomial for the integrand. Other polynomial forms will lead to
different formulations and can provide higher-order extensions of the
KBS method. In a subsequent section we will derive one such scheme
and show its equivalence to the fourth-order KBS applied by Wornom.

2.1 Reduction of KBS to Tridiagonal Form.

Let us eliminate the intermediate function mj from (2b). Solving

for m. and m. ,, we find on [M. N ]
g j-1 [y

Q8= R
2a._l Ei
(aj+aj_l)mj = H;l—— (uj—uj_l) + B (Fj+Fj_l) (3a)
+ (bu) .- (bu) .
( u):l ( u)J_l
2a, Ei (3b)
(aj+aj—l)mj—l = Hgl (uj~uj_l) = (Fj+Fj_l) - (bu)j+(buj_l)

By 5 = r - - T,
Similar expressions for mj and mj+l are found on ‘vj' 341 - by in
crementing j. After some elimination we find

2a.+l 2a._l h.+l Ei
B E (4a)
-(bu)j+1+(bu)j-l = (aj+l aj_l)mj




R — " ;

h. |
With Elil = =~ , b = constant and aj = constant = 1, we see that ;
b

of . +(l+g)F.+F. X

2 S ] 3 =1 |

—————— [u.,,-(1+0)u.+mu. 1= (4b) |

P 2 = + = - it S |

o (1+5)hy i+l 3 2(1+0) ]
+b(uj+l-uj_l)/(l+»;)hj

It should be noted that for non-uniform grids (o-#1), both Unn and

u

o in (1) are represented by first-order accurate finite-difference

discretizations. If the truncation error is formally evaluated, at ﬂj'
this three-point analog of the KBS method is in fact only "first-order
accurate". The most interesting aspect of equation (4b) is the
weighted average of the source term F; this implies a certain amount
of smoothing not found in a differential collocation method. This

(6)

three-point reduction has previously been used by Ackerberg and
others. It has not been extensively applied and appears to be more
efficient than the 2x2 KBS solution procedure. For variable aj, as
in the case of turbulent flows, mj appears explicitly in (4a) and

can be eliminated with (3a). The tridiagonal system is more complex.

3. Modified Finite-Element Formulation (MFE)

Equation (4b) can be derived directly by integrating equation (1)

over two adjacent intervals so that,
m
J My+1

r\
| mnfﬂw)fFM?+

;
)
M1 ™5

The variables u(mn) and F (7)) are then approximated by a polynomial over

—mquﬁdmO ;M =u (5)

[unn 1

each interval [ﬂj_l,ﬂj]. j=1, ...,N. For example, with a quadratic
polynomial approximation for u over each of the intervals, and a
linear polynomial consistent with the trapezoidal rule of integration,

for the source term F*, we obtain on [Tj_l, nj]:

*A lower order polynomial for F is consistent with a quadratic approxi-
mation for derivatives. The quadratic polgnomial in (6) has been
described earlier in reference (2) and 1s designated as S(7m2,1).

““"i




(M = ugtbuy ) (1-t) + (ug-uy_j-hymg)€(l-t) ]
Fim = th+Fj_l(1—t) (6)
=1
where t = Hi_l:l
j -

All functional values appearing in (5) are assumed to be individually
continuous, i.e., u,F,m.
Completing the integration in equation (5), we obtain

h.

- =3k =
u._l)+ 5 [gFj+l+(l+g)Fj+F 1=0 (7a)

(mj+l—mj_l)-b(uj+l 5 j-11

Differentiating (6) we recover the expression in (2b)

=1

M T 2 T Sy
The expression (7b) is also obtained by imposing continuity of mj.
Eliminating mj from (7a,7b) we find

UL =
2 [ % i+l -1
—_— [u. .- (l+2)u. ,]=b (7¢)
c(l+c)hj2 I+L ask (1+o)h,

This equation is exactly the same as (4b) and as mentioned previously
has the advantage of being of a single tridiagonal form. This system
can more easily be solved by the usual two pass algorithm than can
the 2x2 block inversion for the KBS method and provides identical
solutions. For FZ0, (7c) is equivalent to the difference form of the
momentum equation in the Davis Coupled Scheme (7).

This modified finite-element formulation differs from the usual

finite-element method in that the weighting functions are unity and

polynomials are prescribed for each term in the equation rather than

for each variable. This leads to a considerable simplification and
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provides consistent error estimates for the method. Finally, this
procedure also applies for a variable coefficients aj’bj7 in which
case (4a) is recovered; it can be made more accurate by consider-
ing higher-order polynomials. This is shown in Section 6. The

polynomial for u(m) in (6) leads to the usual finite-difference re-

lationships if instead of (7a), we require the continuity of U
This leads to S(7m;2,0) of reference (2). The MFE approach does not
require this additional continuity condition.

4, Weighted Averaging

The usual three-point differencing for first and second deri-

vatives is given by:

SIS SRR (2 _2 8a
Up = STTED) ; [uj 1 (o l)uj 5 uj ]) (8a)
and
— F
u = - Luj 7-(l+4)uj+:-uj l] (8b)

i 7(l+7)hj2

In terms of the mesh half-points, these difference formulas can be

interpreted by the following weighted averages:

m.+ +gm._

U T My T T (D) e
M.,  +-~M.

u..= M, = -t = (9b)

) 1 i 1+¢




-m_ In.-m_

M+
M. = : M._ =
I+ hj+l j=3 hj

(11)

If weighted average consistent with the trapezoidal rule are

assumed in lieu of (9), we have the following formulas for m., Mj:

Gm.+ +m. _
mj = uv = rg) (12)

UM-+;+M-_§
Mj = Fan T l+o

With the same averaging procedure for all source terms, and the
additional conditions (10) and (l1l1), we recover the tridiagonal form
of the KBS or modified finite-element method, equation (4). It is
interesting that as with the modified finite element approach, the
weighted averaging here is applied to the governing equation and not
the individual variable.

If the expression (9) for Mj is left in terms of m ( from (11)),
the 2x2 (u,m)j system is truly second-order accurate for both mj and
Mj; the trapezoidal aQeraging is only first-order accurate. Solutions
using this formulation have never been considered.

As a final note, we have conducted some sample boundary layer
calculations, both laminar and turbulent, with and without .a pressure
gradient. These results are shown in Section 7. It is significant
that neither the downstream weighted formulation (KBS or MFE), nor the
. upstream weighted formulation (usual three-point differencing) is
superior throughout. The preferred method depends on both the flow
profile, and significantly, the finite-difference grid. Therefore,
once again no single formulation can be interpreted as a panacea, even

for a limited class of flows, i.e., simple boundary layers.




5. Fourth-Order Keller Box Scheme

Recently Wornom (3) has used the fourth-order extension of the

KBS proposed by Keller (4). The extension of the usual trapezoidal

rule to fourth-order gives the following two-point Taylor series

expansion: h2
95794-1 = ;i (g5+95_l)- 15 (gg—gg_l) # O(hi) (13)
When applied to equations (2a), we find
h. By 7
sty =5t (mmy o) e (My-Ms 1) (14a)
h.
(am) 5= (am) 5 _)=(bu) y= (bu) 5_; + = (P5+F5_p)
(14b)
-Eji (Fi=F, ,)
12 575 §-1 "

The primes denote differentiation with respect to 7. The expression
(l4a) is equivalen: to one of the spline collocation formulas, see

(5)' Eha

references (1-3) and Section 6. As applied by Wornom
system (14) is closed by evaluating Mj directly from the governing
equations. This results in a 2x2 block for (u,m)j. An alternate
procedure shown in the next section will be to. apply the spline rela-
tionships between mj and Mj‘
If we increment j to j+1 and add the resulting equations to (14),

we obtain a three point version of this scheme. The resulting equa-

tions are as follows:

h.

- = - —l rfv ~~ 9
aj+lmj+l aj—lmj—l (bu)j+l (bu)j_l+ 5 L,l:"j+]_+(l-i- )Fj+Fj-l“
-h.2 (15)

. 2 ’ ’ )-F ] ) -
13— (07 (Fyy-Fy) + (Fy=Fy_1)]




a =
uj+l uj-l 5 [omj+1+(l+c)mj+mj_l] (16)

2

e SR X E

5.1 Keller Box Schemes: Non-Divergence Equations

If we neglect the higher order terms in the two-point

formula (13), we have
35951 T 2—11 (gj’+gj'_l) (17)

As noted earlier, this is equivalent to the application of the
trapezoidal rule and when applied to equation (2a) leads to the
second-order KBS. However, the application of the above algorithm
to the non-divergence form of the equations does not lead to the
original KBS method (8). Equations (2a), with a = 1, éan be re-

written in non-divergence form as

u“ =m (18a)

m, = bm+F  where F = F+b u. (18b)

Application of (17) to this set of equations leads to

h.
- =—l JJ
uj uj—l 5 (mj+-j_l) (19a)
and
5 F e
mj-mj_l =53 (bjmj+bj_lmj_l+Fj+Fj_l) (19b)

Using half-point differencing, as is done in the original KBS method,
the equation (18b) becomes
Ei b.+b.__l i et
mj-mj_l ol [(—13—1——) (mj+mj_l)+Fj+Fj_l] (19¢c)
It is easily seen that equations (19b) and (19c) are identical only

for constant b, i.e., divergence form. The calculations of section 7




will show that in certain cases there can be a significant increase
in accuracy when applying (19¢) in place of (19b). The reduction
to tridiagonal form follows the same course and for variable grids
the system remains first-order accurate. For divergence form
equations the half-point differences and two-point series formulas
are identical. The accuracy of the fourth-order two-point formula
(13) for non-divergence equations has not been established as

(5)

Wornom only considers the divergence form equations characterized

by (14b). If non-divergence form is considered, i.e., (18b), fourth-

order accurate half-point differencing gives

2
h b.+b. h. ’ro
3 Pt W s s 1) F = e P - 1
m mj 1 > [ 5 ) (m.+m —l)+F'+Fj l] ) [F] Fj_lJ
2 (20a)
v 3 (b.<b ] 3 E
a8 [3¢ 3° j—l) (mj+mj_l)+ (mj—mj_l) (bj+b -l)
' !’
— o
2(bm)j+2(bm)j_lJ
and (13) leads to
e e
=M. = .m.=-b. .m. _+F.+F. i
o Mo o e L o e B TR R e i
2
=h, STl - 1
g [(bm+F) y - (om+F) 5 g ]

Once again (20a) equals (20b) only for constant b.

6. Higher-Order Extension of the Modified Finite-Element Method.

The formulation of section 3 provides a consistent approach for

deriving more accurate integral approximations.

This can be achieved

by using higher-order polynomials for F and u in (6).

: earlier e in differential collocation procedures.

We consider

r here a cubic spline polynomial. Spline approximations have been used

The cubic

polynomial approximation over the interval (ﬂj_l,”j) can be written

10




as:(l-3)
2
33, 1) = = h.m. -t)-h.m.t“(1-t
S(M:3,1) =s(M hjmj_lt(l t) h]m] (1-t)
2 .2 (21)
+uj_l(l+2t)(l-t) +ujt (3=-2t)
From (21) a variety of spline relationships can be derived (1-3);
among these are
u.-u.
M. = A e, AR ~ 8 sl (22a)
j h. j-1 J 2
j h.
il
5 B L i
N s " Y §
Mj = hj (2mj+mj+l) + 6 : 3 (22b)
3

Decrementing j to j-1 in (22) and subtracting the resulting egquation
from (22a), we recover the two-point expression (13),

h. B2
= =L (m.+m. ,) - ==— (M.-M.

T e i S v

which forms the basis of the fourth-order extension of the KBS.
Direct integration of equation (1) over two adjacent intervals,

with the polynomial expression (21) for source terms, leads to

1M1 Myay T P gy * Uy,

h.
P §
3 [ch+l+(l+g)Fj+Fj_1] (24)
2
B
Q) ’ ¢ s
e 12 [O’ (Fj+l‘FJ)+(FJ-F]_1)J

From the spline equations (22a) and (22b) the following three-point

formula is obtained:

= = il
uj+l uj_1 3 [gmj+l+(1+g)mj+mj_l]
2 (25)
h. 2
- N - -
13— (07 (Mg =My + (Mg-My ) ]

11




Equations (24) and (25) are identical with the fourth-order extension
of the KBS applied by Wornom (see equations (15) and (16)) Wornom
eliminates Mj from (14) with the non-divergence form of the equation
(18b); in the present formulation this is unnecessary as M. is de-
termined from the spline relationships (22). A small increase in the
truncation error is introduced with (22), but the substitution of (18b),
required by Wornom, is avoided. This can be extremely important for
more complex equations and/or multi-dimensional flows.

As a final consideration the simple quintic spline MFE is de-

veloped. This has earlier (e been designated as S(7M;5,1) and leads

to a sixth order formulation:

2
h.
. = = 2
S(M:5,1) = s(n uy_; *+ hym XD —1—2 Myt

j=1

2
h.
£ " - R 3
+ (10(uy-uy ) By (4my+omy )+ (M;-3M, )]t

2 3 j-1
2
h. .4
- [lS(uj—uj_l)—hj (7mj+8mj_l)+ e (2Mj-3Mj_l) 0=
h 2

i = g i 5

+ [6(uj uj-l) 3hj(mj+mj_l) + > (Mj Mj_l)] t

(26)

With the polynomial (26) we integrate (2a) over the interval

[ﬂj_l.ﬂj] to obtain the sixth-order extension of the two-point Keller

formula (13). We find

Ei o hjz
gj-gj—l O (gj+gj-l) - 10 (gj~gj_l) (27}
B
+ I m

m 7

If we complete the integration (5) using (26) for F, the sixth-order MFE

formula for (2a) becomes

12

N ' . n . ;




h. i

- g = 1 :
(bu)j_l+ 3 ['Fj+l+(l+ )Fj+Fj_ ‘

?3+1m3+1723-1"3-1 7 P 30 1 1

N

h.. (28)
o _J_ 2.8 ” 2- I_ ’
10 (o Fj+l (o l)Fj Fj-l]
h B
l 3.4 3 . "
+ 735 [o Fj+1+(° +1)Fj+Fj_lj
In addition the spline formulas from reference 3 are
3 3 =t 4 _4
7mj+l+8(l+g )mj+7” mj—l_ ;H; (uj+l+(¢ 1)uj o uj—l) (29a)
and
_ 20 o 3 3
—Mj+l+3(l+g)Mj—gMj_l— -—czh.z(uj+l (1+o )uj+” uj_l)
J
4 2 2
+ hjc(—zmj+l+3(c -l)m+20 my_y) (29b)

Since F = F(u; M), the F’ and F” terms in (28a) are at most functions
of u,m,M. The equations (28), (29a) and (29b) provide a (3x3) block-
tridiagonal system for (u,m,M)j. We recall that the second-order MFE
is a scalar system for uj, and the fourth-order MFE is 2x2 for (u,m)j.
The Mj terms in (28,29) can be eliminated by using the differential
spline approximation to (1) in non-divergence form. This is the same
procedure used by Wornom to eliminate Mj in the fourth-order KBS
development. This was unnecessary in the fourth-order MFE formulation,
as the spline relationships (22) were available to evaluate Mj and
maintain a (2x2) system. If a (2x2) sixth-order MFE system is pre-
ferred, it is necessary to apply the non-divergence Mj elimination;
however, as discussed earlier this is not desirable for more complex

systems of equations.
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7. Two dimensional MFE

In this section, the modified finite element method is ap-

plied with a two-dimensional equation of the following type:
i

B, * (u'r')X + (v‘I‘)y = ﬁ: (TXX+TYY) + q (30)
If we define
= 1

F = uT R, £ ]

G = VT - L. T (31)
R 3%
e

P=qg~"T . J

The above equation can be written as:

Fx + Gy =P (32)

In this two-dimensional case the integration is over a rectangu-
lar grid. The method can be used for other element shapes; how-
ever, we shall only consider a rectangular element in the present
investigation. Bicubic spline polynomials can be used for curve
fitting in two dimensions; however, in the present analyses,

(11) are used for discretizing equation (32). This

partial splines
amounts to a splitting procedure, where the curve fit is made in
the x direction and then a second curve fit is made in the y di-

rection; the order is arbitrary. This procedure has been shown

to be equivalent to the use of bicubic splines (see reference 1ll).

Integrating equation (32) between (xi-l'xi+l)’ we obtain
s o
F -F, + B~ {o G + (l4c0_)G.+G 1
i+l Ti-1 -2 1’x i+l g b Sl 5

2

( 2 3\ N
=15 15 (G116 + 6 )]

~

(33a)

= 54-24
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where k. = X=X, : g ki+l/ki

Oyl it (IFo IR +P, )

(33b)

o 2 =
zi F [Ux {(PX) i+l-(Px)i }+ {(Px)i (PX) i—l}]

Integrating over [yj-l'yj+l}' with hj = Sy and - = hj+l/hj' we

%
obtain
h.
51 - , i
7 Lop(Fiy, g1 Fiog, g1l (toy) (Fypy 5=Fi 4
t Wy 300 %3 900 ]
~h 2
s S - 1
2 Ly {(Fy)i+l,j+l (b B s+ Ly 5]
X,
&
* 30 LoxlGiy, 4417811, 5-1) P (M¥oy) (€4 549764, 501)
(34)
(B 1, 3417%5-1, 5271
L 2
i 2
=37 Loy {(Gx)i+1,j+1‘(Gx)i,j+1‘(Gx)i+1,j-1+(Gx)i,j-1
i - = -1
+ {065, 5417 111, 541 (Gx)i,j-1+(Gx)i—l,j-llJ
h.
o wb = s -
7 oy (S5, 44172y, 341) +(1+ay) (85,472,940 * By 51785, 5301

2 2 )
-n2/1210, {(sy)i‘j+l-(zy)i'j+l-<sy)i’j+<zy)i,jf

+{(sy)i’j-(zy)i'j-(sy)i'j_l + (zy)i,j-l}]

LS




7.1 Example: Second-order MFE for Transonic Small Disturbance

Equations

As an example of the two dimensional MFE formulation, the
transonic small disturbance equations are considered. 1In this
analysis only second-order accurate theory is discussed; i.e.,
the ki and h§ terms in the previous development are neglected.
The fourth order extension is not considered here although it
can be obtained from the equations of section 7. We include

e of this

this example here since the earlier formulation
problem is only first-order accurate in the supersonic region.

The transonic small disturbance equations are:

(e —(y+l) e, T8, + o =0,

where vy is the ratio of specific heats, k the transonic similar-

ity parameter and 3 the velocity potential:

u= 3 and v = 3 F
X Y

Rewriting the equation in conservation form, we obtain

(ku - b ast 3 uz’ E=r =0
2 “X Y

This equation is identical to equation (32) with

F=ku-£]:‘u2 ’
2
and G = v -
P =20 .

Since the equation is of mixed type, the integration must reflect
the characteristic domain of dependence in the supersonic region.

i i : r 5 T 1
Therefore for subsonic regions we integrate over in_l,xi+l‘,hyj_l.yj+i_

so that (34) applies directly. For the supersonic domains we integrate

16
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- r - . . T =
over [xi_z,xi_, Yjo1+¥441] ®© that (34) applies with i=i-1. For
the full potential equations a similar procedure would apply.

In order to show the second-order accuracy for the supersonic

regions, equation (33a) with i-i-1 becomes, in terms of (u,v),

(Ax) .
1 2 . 2 B 1) S =
eu-B2u?y - ku-Bie?), o = — (o, (vy) s+ (1ra ) (v )y o
o (Vy)i_2]
where L P (Ax)i/(Ax)i_l-

It is easily shown that this equation is second-order accurate in

Ax even for non-uniform grids. The y integration then leads to

(34) . The final expression for (u,v) or 3% involves the nine points

r (139 .
on [x. ,,x; 1, [yj first-order

formula requires only five points.

-l'yj+l]' where the Murman-Cole

8. Boundary Layer Examples

The fourth-order MFE method is applied to the parabolic boundary
layer equations written in conservation form. Comparisons are made
with second-order techniques, the fourth-order spline 4 collocation

method applied to the non-divergence differential form of the equa-

tions and the Wornom fourth-order adaption of the KBS. Specific
examples include (1) the similarity (ordinary differential)
equations governing the laminar flow over a flat plate and at a
stagnation point, (2) the quasi-similar model equation for the
turbulent flat plate boundary layer, and (3) the non-similar
boundary layer, both laminar and turbulent, described by a
decelerating linear external velocity field (Howarth problem). In
almost all cases an exact or very accurate numerical solution is

available for comparison purposes.

L7

U I TR ——




The governing boundary layer equations are

N

(Lroyvo)y + ((2422£,)v), = vP-e(1-v)+2ev2 (35a)

i i
I |

£p = E.(2,T) =V (2,7) =V , (35b)

where : is the turbulent eddy viscosity defined here by the
(9)

Michel single layer model

Rty o 1, . S
¢ =BCOPTL ]uvl/(z») ;

-%

~e

5
F = l-expl-7/27; A& = 26 E(zgRe)z(uﬂ)ﬂ=O]

i
2 =0.085 7M_(25/R_)2[tanh(0.417/0.0857_ )71 ;
e e e
X

. L A
and T = y(Re/Z;) ; £ = Jouedx
du
2z —
g(=) = —5—-5 : ﬂe = TMat V = 0.995 and e denotes the boundary
u
e

layer edge.

For the flat plate geometry, 2=0; for the stagnation point, g=l;

for the Howarth flow, u, = l-x and » = -25/(1—25)%; for laminar flow,
n B 0.
The boundary conditions are
f(2z,0) = v(g0) =0 and limV(s, M) =1 . (SSe)
TN
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8.1 Fourth-Order MFE Equations

For the boundary layer flow (35) the MFE equations are given

2 2

by (22-25) with a = 1+z, b = -(£f+2%f_) and F = V -a(l—V2) + 28V

ug

for (35a), and a = 0, b =1, F =V for (35b). The streamwise
gradients are discretized by backward or central differences. A
3x3 block-tridiagonal system for (u,M,f) results.

The boundary conditions are given by (35c); in addition, the
boundary values for m or M are given by (14b), or (l14b) and (22),
(10)

respectively. An alternate boundary condition, used earlier

for differential spline boundary layer calculations is given by

M(g,0)% = -a-h,?((28-1)m®(z,0)+m _*(2,0)) /12 = = a b2V V(2,0)/12.

where h2 = “2 : nj denotes the grid point normal to the surface;
hj = nj-nj-l is the local mesh width; AF = it is the mesh
width along the surface.
8.2 Solutions

(a) Similar Laminar Boundary Layer

The results for the similarity solutions‘(%?)=0 in (35a), for

flat plate (R=0) and stagnation point (p=l) flows are given in

Tables 1-3 for a variable and uniform mesh, with ten interwvals be-

*m(0, #) can also be obtained from a Taylor series expansiqn at
™=0. For coarse gri?§)this can be preferable to the spline re-

lationship for m(O, &)




..hIH---n--n-i--n-I-i--ln----I---I--l-------ﬂ--t;—

tween the surface and the outer boundary. For the variable grid
)} = / r) <
N =a/t/(1+p () (36)

where a = 8.26 , bO = -0.4 and a, = 24.2538 (l+bo)“.

Figure 1 depicts the percentage error in wall shear, for
2 =1, as a function of the number of intervals. The velocity
profiles for the variable grid with & = 0 are given in Table 1.

The KBS4 and fourth-order MFE methods using divergence (conserva-
tion) form equations are generally the most accurate. The KBS4
method, which requires the use of the governing equation for Mj

is slightly more accurate than MFE; however, the latter is less
time consuming and therefore, for equal accuracy the two procedures
require approximately the same CPU time. For more complex systems
of equations the MFE approach should become more favorable.

The second-order methods are inconclusive. For the flat plate
geometry and a variable grid, the KBS is excellent and the finite-
difference poor. For 8 = 0, with a uniform grid, and for the wvari-
able grid /8 = 1 solution, the opposite holds; in fact, the non-
divergence finite-difference solutions are better than the divergence
KBS results. The same is true for the so-called Davis Coupled

(7) (pcs) .

Scheme
The solutions deteriorate, in many cases, when non-conservation

equations'are considered. The KBS2 results are particularly note-

worthy in this respect, moreover, the large differences in the half-

point KBS and two-point KBS2 adaption used by Wornor (5)

are evident.
Non-conservation KBS4 solutions were not available.
The non-divergence spline 4 solutions are poor for the variable

grid @ = 0 case but are significantly better for the g = 0 uniform
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grid and 8 = 1 variable grid examples. Furthermore, when the
spline 4 method is applied to the equations transformed by (36),
instead of a grid generated by (36), a reasonable improvement
results,

It should be noted that the integral approach (KBS,MFE)
would involve considerably more arithmetic if (1) the transformed
equations were considered, (2) the governing equations were more
complex or extensive (in particular, the use of the governing
equation for Mj in KBS4 requires more operations), or (3) the
equations are two-dimensional; as shown in Section 7, the complex-
ity of the integrated equations is increased significantly. On
the other hand, the non-divergence spline 4 procedure is not modi-
fied greatly in these cases; therefore, the slight decrease in ac-
curacy may be offset by its simplicity. Finally, the spline 4
procedure can be adapted in order to obtain conservation solutions
in differential form; in references (2,3) significant improvements
in accuracy were noted. This requires several additional curve
fits, but does not appear to be as complicated as the two-dimensional
KBS or MFE procedures for simple rectangular elements. For other
element shapes, the integral finite-element approach might be more

preferable.

In summary, it can be concluded that the accuracy of the results,
of any of the fourth-order methods described here,is very dependent
on the combination of pressure gradient parameter g and the choice

of grid.

| 2



(b) Quasi-Similar Turbulent Boundary Layer

For these calculations we assume that §E = 0 in (35a), even
though the solutions do depend on (Re?). This is a fair approxi-
mation and allows us to consider an ordinary differential equation
for the turbulent boundary layer. In subsequent examples, the
full non-similar equations will be considered.

The mesh is given by the grid generated from (36), with
a = =109, b0 = 0.05 and O 60(l+bo)a. The percentage error in
shear stress is depicted on Figures 2 and 3, for R = 0 and ] = 0.5,
respectively. For these cases Te in the turbulent eddy viscosity
model is given as 24.5 and 15.8,(5) respectively. The results for the
KBS4 and MFE are good, although less than fourth-order accurate.
This appears to be caused by the error in the numerical evaluation
of the eddy viscosity :. For fixed e, fourth-order accuracy should
be recovered.

The non-divergence form solutions, obtained with the grid
transformation are reasonable, but somewhat erratic. The second-
order finite-difference solutions are, surprisingly, more accurate
than the divergence KBS2 results. The non-divergence KBS2 solutions
are rather poor.

(c) Non-Similar Solutions

For the non-similar boundary layer calculations a,b and ¥ in
(35) are defined in section 8.1. Three cases have been considered
here: (1) turbulent flow with 8 = 0.5; (2) laminar Howarth problem,
and (3) turbulent Howarth problem. 1In the first case the quasi-
similar solution has previously been discussed. The effects of the

non-similar terms will be examined. For case (2) the separation

point has been critically examined in many investigations; it has
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been found that separation occurs at x = 0.1198. 1In this section,
separation point calculations for course grids are compared with

(12) obtained with the non-divergence spline 4

earlier solutions
system of equations, as well as second-order methods. Finally,
the suppression of separation for the turbulent boundary layer in
a decreasing linear external flow is described. To the authors'
knowledge solutions for this flow have not been published. This
case is considered here, simply to demonstrate the applicability
of the MFE method to turbulent boundary layers in adverse pressure
gradients.

The solutions are shown in Tables 4-6. For constant R = 0.5
the grid defined by (36) with 10 intervals in T is specified;
”e=15.8 in the eddy viscosity model. This case has previously

been treated by Wornom L

using the KBS4 procedure. The effect

of the marching increment A7 and comparisons with the quasi-similar
solution at ReE=1.88xlO6 are given in Table 4. For Wornom's grid
the =, are given as: 0, 86x107°, 43x10~%, 8s6x107%, 43x1073, 0.17,
0.26, 0.34, 6.5%, 0.68, 0.86, 1.03, 1.28, 1.50, L.7L and 1.88 for
i=l,...,17. There is a small effect of the £ spacing, but more
important is the assumption that ne=15.8 throughout. This should
only be true at Re?=L£8x106, and therefore the final solutions have
an inherent error associated with the inaccurate ﬂe value used for
£<1.88. A more accurate solution* would require the precise evalua-

tion of T at each 7 location; however, with a crude 7 grid this is

*In a more exact calculation with 60 intervais it was found that at

Re=430,000,nez10.
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not possible, and this leads us to believe that for the turbulent

boundary layer, the error estimates obtained with the model guasi-
similar problem are somewhat artificial.

For the laminar Howarth problem a very coarse uniform grid,
with h=1.0 provides reasonably accurate estimates of the separation
point, see Table 5. The MFE results are somewhat less accurate than

4 12) pethod but

those obtained with the non-divergence spline
both are significantly better than the second-order solutions.

Some calculations were also made with the variable grid considered
for the similarity solutions. As was found with the similarity
problems, the non-~divergence spline 4 results become less accurate
than those obtained with the uniform grid. Surprisingly, the MFE
solutions also deteriorate; and, for a reason that is not clear,
these calculations require orders of magnitude more iterations for
convergence than do the spline 4 calculations or the MFE solutions
with the uniform grid. It would appear that the MFE calculations
are somewhat more sensitive to the grid generated by (36) when non-
similar flows with adverse pressure gradients are considered. The
similarity results using MFE and (36) were extremely accurate and
rapidly convergent.

For the turbulent Howarth problem, separation does not occur
for #<0.31 or Reg<580,000; the ﬂe value in the eddy viscosity model
5 is evaluated at each# location and the transformation (36) with 60
in;ervals is specified in order to accurately estimate e The MFE
results, on Table 6, appear to be reasonable, although the accuracy

is difficult to assess. The 7 grid is rather crude, A#=0.005, and

comparisons with other procedures were not possible.

L_____.___._.__’L____L




In summary, the accuracy of the various methods described

herein appears to be dependent on a combination of (1) the prob-

lem, i.e. laminar or turbulent, constant 3 or variable g8, (2),

the choice of the grid and (3) non-divergence or divergence form

of the equations. Generally, the fourth-order methods lead to
improvements over second-order techniques but the relative accuracy
of the fourth-order procedure is dependent on the factors just

mentioned.
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Table 1l: Laminar Flat Plate (2=0): Variable Grid to 24.2538

(10 intervals)

(a) Surface Shear Stress

Conservation Form Solutions

Exact MFE KBS4 KBS?2 F.D.

0.469600 0.470362 0.469835 0.468759 0.380908

Non-Conservation Form Solutions

SPLINE4 TRANSFORMED KBS KBS2 ples
PLANE
SPLINE4

0.438678 0.476971 0.494798 0.421500 0.488898

(b) Velocity Profiles

Conservation Form Solutions

Grid Exact KBS 4 MFE KBS 2
0.0000 .00000. 0.00000 0.0000000 0.00000
0.0500 »02347 .02348 .0235044 .02343
0.1421 .06671 .06674 .0667994 .06659
0.3076 .14437 .14444 .1446144 .14412
0.6023 .28164 .28178 2819718 + 28113
1.1266 .51474 .51498 «5157463 .51364
2.0651 .83286 83293 .8350900 83263
3.7657 39532 .99616 »9935382 1.01L397
6.9004 1.00000 « 99947 140010271 .99643

12.8087 1.00000 99983 » 9995595 1.00320
24.2538 1.00000 1.00000 1.0000000 1.00000

Non-Conservation Form Solutions

SPLINE4 TRANSFORMED KBS KBS2 DCS
PLANE
SPLINE4
0.00000000 0.0000 0.0000 0.00000 0.0000
.02192272 .0246 .0247 .02106 .0244
.06231277 .0699 .0703 .05987 .0694
.13487369 .1513 .1521 .12956 .1503
.26319919 .2949 .2963 .25264 .2936
.48176760 .5396 .5382 .46098 .5393
.78493782 .8605 .8544 .75179 .8929
.93994754 1.0187 1.0156 .97564 1.0820
.96388488 .9999 .9960 1.00253 .9969
.95144079 1.0259 1.0036 .99166 1.0687

1.00000000 1.0000 1.0000 1.00000 1.0000



e e—— i

Table 2: Laminar Flat Plate (2=0): Uniform Grid (h=l)

Exact (NC)S4 (NC) KBS2 (NC) FD
(0.24%) (6.15%) (1.61%)
0.469600 0.470730 0.440743 0.47718
MFE2$ MFE4 KBS4
KBS 2
(6.9%) (0.003%) Unavilable
0.437207 0.469614

Table 3: Laminar Stagnation Point (a=l): Variable Grid to
24.2538 (10 intervals)

Exact (NC)F.D. (NC)S4 (NC)DCS
(oL 78) (0.141%) (L s53%)
1.23259 1.24826 1.,23084 125140
P.D. DCS MFE KBS4
(0.226%) (2.39%) (0.042%) (0.016%)
1.23538 (1.26205) 1.23311 (1.2328)
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Table 4: Turbulent Non-Similar Solutions (8=0.5, R__=1.88x10°,7_=15.8)

(a) Cf x 10°
MODEL MFE (AF=0.005) MFE (WORNOM GRID)
3.5473 3.9182 3.9344
(b) VELOCITY PROFILE
GRID MODEL MFE ( AF=0.005) MFE (WORNOM GRID)
0.0000 0.0000 0.0000 0.0000
0.0500 QR THS 0.1828 0.1836
0.1421 0.3742 0.3935 0.3948
0.3076 0.5162 0.5387 0.5401
0.6023 0.6052 0.6296 QL6312
1.1266 0.6716 0.6980 0.6997
2.0651 0.7342 0.7624 0.7643
3.7657 0.7971 0.8269 0.8288
6.9004 0.8801 0.9110 0.9130
12.8087 0.9636 0.9810 0.9814
24,2538 1.0000 1.0000 1.0000
Table 5:' Laminar Howarth Problem: separation
(NC) MFE?2
Exact Spline4 MFE4 KBS2 )
( Uniform Grid 0.1196 01225 0.1374 0.1495
h=1.0
{ Variable Grid 0.1096 0.1328 0.1515  =—====-
0.1198 t q“ax=24.2538
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Table 6: Turbulent Howarth Problem (Re=l.88xlo6)
(a) Skin Friction Coefficent
0.0410 (0.0710 ]0.1010 |0.1310 J|@.1610
cx10> [6.1360 [5.2861 [4.7318 |4.2847 |3.8721
0.1910 }0.2210 ]0.2510 ]0.2810 Jo.3110
CfxlO3 3.4849 |3.0593 {2.5985 }2.0266 |1.2409

(b) Velocity Profile

T, Grid Location

0.0
N,S3A78271)1=-02
06117S5137D=01
14183056910 =01
0,24181089H=01
0N,38562323n=01
0.50654555N=01
0.64RAR4A42D=01
0.309083420=01
0.99A139130D=01
0.12112005D0 00
Ne14578572D 00
04174011320 00
0.20624400D 00
0.,24298282D 00
N,28478443D 00
0,33226939D 00
0,38A129150D 00
0.447133910 00
0,51614079D 00
0,564103630 00
0.,6R20K317D 00
0,7R1253560 00
0,89294008D 00
0.,10185830D0 01
0,11598033D 01
0.131R3941D 01
0e.16963451D 01
0.169586260D N1
06191939290 01l
0.,216964630 01

Velocity_Profile

0,0

0,3r2504010~0¢
D.720003324D=07¢
0el132558370=01
Neld959A8110=01
Nel27T0930900=01
)e3h0RAL1H4D=M|
Qe4hHRNEE22D=01
06595739630=-01
0747294570 =01
0.92622170D=01
0113516930 00
0.137461670 00
0.154126980 00
0.192821600 00O
0.22254502D0 00
0.25235271D 00
0.23148961D 00
0309470670 00
0.335037310 00
06351112640 00
0.336T720050 00
0.40696584D 00
0.427972510 00
0447905800 00
0.4A5A9031RD 00
0.4835142360 00
06502745090 00
0.519R95250 00
0.53665604D 00
0.55330950D 00O

e;=584680

=23.3468
Te

T Grid Location

) e 2449527R4D
0.276266210D
0.311243240
0.35030147D
0+.393891910D
0.,46251342D
0.49AT7176HD
0.557114550
0.62437805D
0,69625294D
0,758256183D
0,87521320D
0,97/21000D
0,10926593H
0,12197r26D
0,13A09277D
0,15175R11D
0.,149138158D
0,1K8R41370D)
0.,2097%3RaDN
0,2334AK09D
0,25970R2KD
0,2RR77075N
N,320948R60
0,35A565560
0,39597641D
0,439572700
0,48778502D
0,54108710D
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